BFTCBFTP: BYZANTINE-FAULT-TOLERANT CONSTRUCTION OF BFT PROTOCOLS

EDWARD TREMEL

SIGSEGV 2019
BYZANTINE FAULT TOLERANCE

- Long-standing problem in systems
- Byzantine (adj): excessively complicated, and typically involving a great deal of administrative detail
- Inspired by bickering generals
- Assumes everyone is untrustworthy
BFT PROTOCOLS

- Need to be very complicated
- Much disagreement on how to construct them
- Necessary in order to make fault-tolerant systems
 - Because we said so
- Clearly, we always need more BFT protocols
- Constructing a BFT protocol takes a lot of work, hard for one researcher to do alone
- Distributing the work to multiple researchers would help, but systems researchers bicker more than Byzantine generals
SETUP

- 3f + 1 systems researchers
 - Why? Because that’s the standard for BFT
- Mutually distrustful
- Must agree on details of protocol
- No “trusted third party”
- Solution can’t have a leader – everyone wants to be the leader
- Everyone has their own public/private key
PREREQUISITE: KEY EXCHANGE

- All BFT protocols depend on signing messages
- Bootstrapping problem: exchanging public keys when the network is untrusted
- Our solution: Researchers meet IRL at a systems conference, give each other keys
- Body doubles impersonating researchers is out-of-scope for this work

“Definitely PK_R”

“Definitely PK_R”
PREREQUISITE: KEY EXCHANGE

- All BFT protocols depend on signing messages
- Bootstrapping problem: exchanging public keys when the network is untrusted
- Our solution: Researchers meet IRL at a systems conference, give each other keys
- Body doubles impersonating researchers is out-of-scope for this work
STEP 1: BROADCAST STEP 1 OF PROTOCOL

- Someone broadcasts their proposal for Step 1 of protocol, signed with their private key.
- Whoever takes initiative gets to start.
STEP 2: CRITICIZE STEP 1 OF PROTOCOL

- Each other researcher reads Step 1, writes criticism
- Append signed criticism to Step 1, broadcast to other researchers
- If anyone receives criticism with different Step 1, proof that author of Step 1 equivocated
STEP 3: HANDLE CRITICISM

- Author of Step 1, upon accumulating signed criticism from others, may revise step 1 in response
- If criticism is contradictory, may choose to reject
- If any criticism agrees, may begrudgingly accept and apply to protocol
- Sends out revised Step 1, with signed criticism appended, to prove authenticity of criticism
- Critics may detect equivocation by other researchers on their criticism at this point
Other researchers echo the revised Step 1 to each other, to ensure author is not equivocating.
STEP 5: BROADCAST STEP 2 OF PROTOCOL

- Everyone who has an idea for Step 2 broadcasts it, appended to revised Step 1, signed with their key.
- Now we have to agree on whose idea to use.
STEP 6: VOTE ON STEP 2

- Researchers sign and rebroadcast a version of Step 2 if they agree to use it
- Once a version of Step 2 has signatures from a majority, continue with it
- Decide whether to vote for a version based on reputation system
 - Vote for proposal if you like the researcher who proposed it
STEP 7: CRITICIZE STEP 2 OF PROTOCOL

- Just like criticism on Step 1
- Criticize version of Step 2 with majority votes
...AND SO ON
EVERYBODY SENDS LOTS OF MESSAGES TO EVERYONE
Everyone will get the same set of proposals, votes, criticism, etc.

If enough researchers agree on each step, you can make progress

But there’s no guarantee they will agree

Oh well, BFT protocols aren’t live anyway
Somehow, this usually works in practice
Many papers on BFT algorithms have been written collaboratively
I HOPE YOU DON’T HAVE ANY QUESTIONS