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Abstract

As Machine Learning is used in an ever-increasing number of applications, a variety of
gradient-descent methods have been developed for a variety of situations. We present
TENNISBALL, a new empirical technique founded in physical theory. Our system finds
accurate local minima with minimal computational time and physical guarantees of cor-
rectness. Our results significantly outperform state-of-the-art techniques on each task we
examine.

Keywords: Gradient Descent, Optimization, Efficiency, Efficientness, Efficacy, Concision

1. Introduction

We present TENNISBALL (Type-safe Empirical (Neural Net Compatible) Searching-for-
Bowls Algorithm with Less Latency), an Empirical method for gradient descent that utilizes
physical constraints to solve optimization problems. We achieve state of the art results.

2. Related Work

Prior techniques for gradient descent include Stochastic Gradient DescentBottou (2010),
ADAGRAD Duchi et al. (2011), and ADADELTA Zeiler (2012). However, none of these
techniques directly utilize physical constraints. To the best of our knowledge, our work is
the first to eschew expensive computational techniques for empirical ones.

3. Method

3.1 TENNISBALL

TENNISBALL utilizes physical constraints to discover exact local extrema. See Figure 1
for an illustration of the technique.
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Figure 1: Illustration of the TENNISBALL technique.

3.2 Snow Sculpting

If natural hillscape cannot properly model the function to examine, one only needs to
wait for snow accumulation. Then, the proper function shape can be formed using Snow
Sculpting, allowing analysis of extrema for more unusual functions.

4. Data

We collected data by hand around Cornell’s Ithaca campus.

5. Results

Our method is great: it avoids issues in flat areas (a problem with Newton’s method), it
can model arbitrary functions with snow sculpting, it avoids the curse of dimensionality by
limiting optimization to 1- or 2-dimensional problems. It uses far less computational time
than prior gradient descent algorithms.
It can face pitfalls like local minima, gorges and pitfalls, but avoiding these is up to the
user.

6. Conclusion

Our TENNISBALL Technique is basically perfect and way better than everything else.
We’ve revolutionized the field and nothing will ever be the same.
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