
On the Bonsai Structure of Green-Brown Trees

Ethan Cecchetti
Cornell University

ethan@cs.cornell.edu

Abstract
There are a wide variety of tree-based data structures
with widely varying properties and performance char-
acteristics. Structures such as AVL trees and red-black
trees provide strong guarantees about the structure and
performance, but are often difficult to understand and
provide very little leeway to maintainers. Conversely,
Bonsai trees provide maintainers with a nearly complete
ability to control the structure and layout of the trees,
but are correspondingly difficult to maintain and require
enormous resource allocations.

To alleviate many of these problems, we introduce
green-black trees, a new data structure that combines the
simplicity and lightweight properties of common binary
trees with the flexibility and control of Bonsai trees. Like
in the Bonsai case, maintainers can easily determine not
just the level of balance, but the exact shape of the tree. It
is similarly easy to identify the exact location of leaf data.
Unlike Bonsai trees, however, green-black trees achieve
these results through a very simple set of invariants that
are nearly trivial to maintain programmatically.

1 Introduction
In both computing and elsewhere trees are nearly ubiqui-
tous. They are used to store data in a variety of cases and
are evident in nearly every setting. Many classic binary
tree structures are, however, geared specifically towards
storing data that is efficiently comparable. For example,
AVL trees and red-black trees both provide strong as-
surances on the maximum runtime of various operations,
but do so by restricting the shape and layout of the tree
itself. While this may be appropriate for many applica-
tions, sometimes it is necessary to provide the maintainer
with more precise control over the shape of the tree itself.

Other trees, such as Bonsai trees, provide extremely
fine-grained control over their shape and appearance to
managers. With appropriate setup and a watchful hand,
nearly anything is possible. Unfortunately these trees are

extremely complex, difficult to maintain, and resource-
intensive.

We attempt to bridge this gap with the introduction of
the green-brown tree. These trees are lightweight data
structures that are easy to understand and manage, yet
provide many of the same guarantees as Bonsai trees.

2 Green-Brown Trees
Green-brown trees are a lightweight data structure that
provide a large amount of flexibility and configurability.
They are use minimal resources and still allow for ex-
tremely precise control over the balance and shape of the
tree and location of any data stored within.

In order to achieve these goals, we borrow a core idea
from red-black trees: we color each node in the tree one
of two values—in this case green or brown. We then
maintain the following three invariants on the tree nodes
based on color:

1. All leaves are green.

2. All nodes with a green child are brown.

3. All color changes are local.

The first two invariants are straightforward. For the
third, we mean that whenever a node is moved, only that
node and its direct parent and children can change color.
Since we primarily insert new nodes as leaves, this means
that the new leaf must be green and we must always color
its parent brown upon insertion.

2.1 Bonsai Properties
We note that Bonsai trees are carefully maintained to al-
ways have green (external) leaves, while keeping all in-
ternal structure brown. The three invariants mentioned
above create a simple mechanism for maintaining exactly
this property in green-brown trees.

Moreover, Bonsai trees allow for nearly any relative
placement of nodes in the tree and thus any level of bal-
ance (or imbalance). Similarly, green-brown trees allow

1

mailto:ethan@cs.cornell.edu


the data manager to structure the tree in any way he or
she desires. It is possible to create a perfectly balanced
tree, one that is so imbalanced that it is hard to immedi-
ately identify as a tree, or anything in between.

3 Related Work
There are numerous varieties of trees and many are quite
common in different areas.

Redwoods provide enormous storage capacity and are
highly reliable. The leaves, however, start very deep
into the tree thus wasting usable space closer to the root
and requiring a large amount of time to access anything
therein.

Pine trees look superficially similar to redwoods, but
are actually quite different. They are naturally balanced,
giving the maintainer less precise control over the tree
layout. Moreover, unlike green-brown trees (and Bonsai
trees), they have internal green nodes with often make
things difficult to locate and understand.

Oak trees, much like pines, are extremely prevalent
and naturally quite balanced. They do not, however, pro-
duce very efficient access as the tree fans out massively
very close to the root, thereby losing many of the conve-
nient properties of binary trees.

Finally, maple trees present some interesting proper-
ties. They are not inherently balanced or wasteful in
the ways that redwoods or pines are, but they have ex-
tremely unstable leaves. The leaves will periodically
change color arbitrarily, which will it looks impressive,
is actually very difficult to track and significantly hurts
reliability. Worse, maple’s sometimes drop leaves with
very little warning, which can cause catastrophic data
loss. While maples are efficient, this problem requires
expensive safeguards and can make them very difficult
to employ in practice. Also they are sometimes sticky.
The stuff tastes good, but that is not relevant to our use-
case.

4 Conclusion Haiku
A green-and-brown tree
can be any shape or size
without work. Bonsai!

Acknowledgements
The author would like to acknowledge the conference
chair for encouraging this work. He would also like to
thank numerous people in the Cornell Computer Science
department for their ideas and input during the process.

2


	Introduction
	Green-Brown Trees
	Bonsai Properties

	Related Work
	Conclusion Haiku

